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Every year, about 1.25 million people die worldwide in car 
crashes1. Laws concerning principles of negligence cur-
rently adjudicate how responsibility and blame are assigned 

to the individuals who injure others in these harmful crashes. The 
impending transition to fully automated cars promises a radical 
shift in how blame and responsibility will be attributed in the cases 
where crashes do occur, but most agree that little or no blame will be 
attributed to the occupants in the car who will, by then, be entirely 
removed from the decision-making loop2. However, before this 
era of fully automated cars arrives, we are entering a delicate era of 
shared control between humans and machines.

This new moment signals a departure from our current sys-
tem—where individuals have full control over their vehicles and 
thereby bear full responsibility for crashes (absent mitigating cir-
cumstances)—to a new system where blame and responsibility may 
be shared between a human and a machine driver. The spontane-
ous reactions of people to crashes that occur when a human and 
machine share control of a vehicle have at least two direct industry-
shaping implications. First, at present, little is known about how the 
public is likely to respond to crashes that involve both human and 
machine drivers. This uncertainty has concrete implications: manu-
facturers price products to reflect the liability they expect to incur 
from the sale of those products. If manufacturers cannot assess the 
scope of the liability they will incur from automated vehicles, that 
uncertainty will translate to substantially inflated prices of auto-
mated vehicles2. Moreover, the rate of the adoption of automated 
vehicles will be proportional to the cost to consumers in adopting 
the new technology2. (The rate of the adoption of this technology 
is contingent on many other factors, including consumers’ under-
standing of the relative risks and benefits of using the cars. We do 
not mean to state that uncertainty about the scope of liability for 
manufacturers is the only factor impacting adoption, just that it is 

an important one.) Accordingly, the uncertainty about the extent 
of corporate liability for automated vehicle crashes may be slowing 
down automated vehicle adoption2 while people continue to die in 
car crashes each year. Clarifying how and when responsibility will 
be attributed to manufacturers in automated car crashes will be a 
first step in reducing this uncertainty and speeding the adoption of 
automated, and eventually fully automated, vehicles.

The second direct implication of this work will be to forecast how 
a tort-based regulatory scheme (which is decided on the basis on 
jury decisions) is likely to turn out. Put another way, understanding 
how the public is likely to react to crashes that involve both a human 
and a machine driver will give us a hint as to what standards will be 
established if we let jury decisions shape them. If our work uncovers 
systematic biases that are likely to impact juries and would impede 
the adoption of automated cars, then it may make sense for federal 
regulations be put in place, which would pre-empt the tort system 
from being the avenue for establishing standards for these cars.

Already, automated vehicle crashes are in the public eye. In May 
2016, the first deadly crash of a Tesla Autopilot car occurred and the 
occupant of the car was killed. In a news release, Tesla explained: 
“Neither Autopilot nor the driver noticed the white side of the trac-
tor-trailer against a brightly lit sky, so the brake was not applied”3. 
In March 2018, the first automated car crash that killed a pedestrian 
occurred. A pedestrian that was crossing the street went unnoticed 
by both the car and the back-up driver (Uber). A few seconds before 
the crash, the car finally identified that it should be braking but 
failed to do so. The driver also braked too late to avoid the collision.

In the fatal Tesla and Uber crashes, both the machine driver 
and the human driver should have taken action and neither did. 
The mistakes of both the machine and the human led to the crash. 
The National Highway Safety Traffic Administration carried out an 
investigation of the Tesla incident and did not find Tesla at fault 
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in the crash4. Likewise, Uber has been exonerated from criminal 
charges after an investigation by a county prosecutor5. Notably, 
press attention surrounding the Tesla incident was markedly skewed 
towards blaming the human driver for the crash, with rumours 
quickly circulating that the driver had been watching a Harry Potter 
movie6, though following further investigation it was discovered 
that there was no evidence grounding this claim7. Likewise, the fate 
of the Uber back-up driver remains unknown5, with press attention 
focusing on the distracted nature of the driver8.

The set of anecdotes around these two crashes begins to suggest 
a troubling pattern, namely that humans might be blamed more 
than their machine partners in certain kinds of automated vehicle 
crashes. Was this pattern a fluke of the circumstances of the crash 
and the press environment? Or does it reflect something psycho-
logically deeper that may colour our responses to human–machine 
joint action and, in particular, when a human–machine pair jointly 
controls a vehicle?

What we are currently witnessing is a gradual and multi-pronged 
increase toward full automation, going through several steps of 
shared control between user and vehicle, which may take decades 
due to technical and regulatory issues as well as the attitudes of 
consumers towards adoption9,10 (see Fig. 1). Some vehicles can take 
control over the actions of a human driver (for example, Toyota’s 
Guardian) to perform emergency manoeuvres. Other vehicles may 
do most of the driving, while requiring the user to constantly moni-
tor the situation and be ready to take control (for example, Tesla’s 
Autopilot). Unless clear or explicitly mentioned, we use ‘human’ and 
‘user’ interchangeably to refer to the person inside the car (being a 
driver or a passenger), and we use ‘industry’ and ‘machine’ inter-
changeably to refer to both company and car combined.

Our central question is this: when an automated car crashes and 
harms someone, how is blame and causal responsibility attributed 
to the human and machine drivers by people who hear about the 
crash? In this article, we use vignettes in which a pedestrian was hit 
and killed by a car being operated under shared control of a primary 
and a secondary driver, and ask our participants to evaluate the crash 
on metrics of blame and causal responsibility. The cases we use are 
hypothetical (insofar as respondents know that they did not actually 
take place), but are not unrealistic as they were designed to contain 
the relevant elements of events that could actually occur. We consider 
a wide range of control regimes (see Fig. 1), but the two main cases of 
interest are the instances of shared control where a human is the pri-
mary driver and the machine a secondary driver (human–machine) 
and where the machine is the primary driver and the human the sec-
ondary driver (machine–human). We consider a simplified space of 
scenarios in which (1) the main driver makes the correct choice and 
the secondary driver incorrectly intervenes (bad intervention) and 
(2) the main driver makes an error and the secondary driver fails to 
intervene (missed intervention). Both scenarios end in a crash. For 
comparison, we also include analogous scenarios involving a single 
human driver (a regular car) or a single machine driver (a fully auto-
mated car) as well as two hypothetical two-driver cars (driven by two 
humans or two machines). We ask participants to make evaluations 
of the human user and one representative of the machine, either the 
car itself or the company that designed the car.

In bad intervention cases (see Case description for details), 
the primary driver (be it human or machine) has made a correct 
decision to keep the car on course, which will avoid a pedestrian. 
Following this, the secondary driver makes the decision to swerve 
the car into the pedestrian. In these sorts of cases, we expect that 
the secondary driver (the only driver that makes a mistake) will 
be blamed more than the first driver. What is less clear is whether 
people will assign blame and causal responsibility differently if this 
secondary driver is a human driver or a machine. Recent research 
suggests that humans may be blamed more than robots for making 
the same error in the same situations11.

In missed intervention cases, the primary driver has made an 
incorrect decision to keep the car on course (rather than swerving), 
which would cause the car to hit and kill a pedestrian. The second-
ary driver then neglects to swerve out of the way of the pedestrian. 
In these cases, the predictions for how participants will distribute 
blame and causal responsibility are less clear because both drivers 
make a mistake. As in the bad intervention cases, agent type (human 
or machine) may have an effect on blame and causal responsibility 
ratings. But, unlike with bad intervention cases, missed interven-
tion cases introduce the possibility that driver role (primary or sec-
ondary) may also impact judgements. It is possible that participants 
may shift responsibility and blame either toward the agent who con-
tributed the most to the outcome (primary driver) or to the agent 
who had the last opportunity to act (secondary driver12–15). Under 
some regimes—such as Toyota’s Guardian—the user does most of 
the driving but the decision to override (and thus to act last) per-
tains to the machine. Under others—such as Tesla’s Autopilot—the 
machine does most of the driving but the decision to override per-
tains to the user.

Results
All studies used hypothetical vignettes that describe a crash (see 
Case description for details on car regimes and intervention types, 
and see Supplementary methods 1 for vignettes of Studies 1–5).

Study 1. Study 1 compared four kinds of car with different regimes of 
control. Each car had a primary driver whose job it was to drive the 
car, and a secondary driver whose job it was to monitor the actions of 
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Fig. 1 | Actions or action sequences for the different car types considered. 
Outline arrows indicate an action by a human (H) and solid arrows 
indicate an action by a machine (M). The top and bottom rows represent 
sole-driver cars, while all others represent dual-driver cars. A red arrow 
indicates a decision—whether action or inaction—that had the avoidable 
death of a pedestrian as the outcome; a blue arrow indicates a decision 
that does not result in any deaths. For example, the H + M type (real-world 
implementation is the Guardian system) has a human main driver (1) and 
a machine standby driver (2). A bad intervention then involves the human 
staying on course (a non-lethal action, indicated by the outline of the 
straight, blue arrow) and the machine overriding that action, causing the 
death of the pedestrian (solid, angled red arrow). A missed intervention 
involves the human staying on course to kill the pedestrian (outline, straight 
red arrow) without intervention from the machine (solid, straight red arrow).
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the first driver and intervene when the first driver made an error. The 
car architectures of central interest were human primary–machine 
secondary (human–machine) and machine primary–human sec-
ondary (machine–human). We also included human–human and 
machine–machine architectures for comparison. This allowed us to 
see how blame was distributed in a dual-driver architecture when 
there was no difference in driver type (human or machine) in each 
of the driving roles (primary or secondary).

Bad interventions. In bad intervention cases, two predictors were 
entered into a regression with blame and causal responsibility ratings 
as the outcome variable: (1) whether or not the driver made an error 
and (2) driver type (human or machine). The main finding is that 
whether or not the driver made an error was a significant predictor 
of ratings (see Table 1, bad intervention, Study 1). In other words, 
unnecessary intervention by a driver leading to the death of a pedes-
trian was blamed more than a driver that operated on the correct 
course—regardless of whether the driver was a human or machine. 
It is worth noting here that we did not detect a reliable effect of driver 
type (human versus machine), once correcting for multiple compar-
isons (see Table 1, human, bad intervention, Study 1). We do not 
discuss this factor further in the bad intervention cases.

Missed interventions. In missed intervention cases, blame and 
responsibility judgements cannot depend on whether a driver 
made an error because both drivers make errors in these cases. 
The main finding for these cases is that driver type—whether the 
driver is a human or machine—has a significant impact on ratings. 
Specifically, in these shared-control scenarios where both human 
and machine have made errors, the machine driver is consistently 
blamed less than the human driver (Table 1, missed intervention, 
Study 1) and Fig. 2).

The human–machine difference appears to be driven by a reduc-
tion in the blame attributed to machines when there is a human in 
the loop. This is evident when comparing both the human–machine 
and machine–human instances of shared control to the machine–
machine scenario. Note that the behaviours in these scenarios are 
identical, but the extent to which a machine is blamed depends 
on whether it is sharing control with a human or operating both 
the primary and secondary driver roles. When the machine is the 
primary driver, it is held significantly less blameworthy when its 
secondary driver is a human (m1 = 57.2) compared to when the 
secondary driver is also the machine (m2 = 68), t(760.6) = −5.0, 
P < 0.0001, m2 − m1 = 10.8, 95% CI for m2 − m1 = 6.6–15 (all tests 
are two-tailed.) Similarly, when the machine is the secondary driver, 
it is held significantly less blameworthy when its primary driver is 
a human (m1 = 53.4) compared to when the primary driver is also 
the machine (m2 = 68), t(722.77) = −6.6, P < 0.0001, m2 − m1 = 14.6, 
95% CI for m2 − m1 = 10.2–19.

Study 2. Study 2 compared the human–machine and machine–
human shared control cars to two different baseline cars: a stan-
dard car exclusively driven by a human and a fully automated car 
exclusively driven by a machine. This allowed us to both replicate 
the main results of Study 1 (the responses to machine–human and 
human–machine crashes) and determine how blame was assigned 
differently to dual-driver cars as compared to sole-driver cars. The 
industry representative was varied (car and company), but this 
exploratory variable was analysed neither in this study nor in sub-
sequent studies.

Bad interventions. We replicated the main results of Study 1: namely, 
in bad intervention cases for the shared-control cars (machine–
human and human–machine), whether or not the driver made an 

Table 1 | Regression analysis of data collected in Studies 1–5 in the cases of bad intervention and missed intervention

Blame and causal responsibility

Bad intervention Missed intervention

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3 Study 4 Study 5

Human 2.141 3.358 −1.508 16.942 17.493 3.567 10.745 2.594

(1.061) (1.574) (0.811) (1.148) (1.514) (0.852) (2.189) (0.860)

P = 0.044 P = 0.033 P = 0.063 P = 0.000 P = 0.000 P = 0.000 P = 0.000 P = 0.003

Mistake 64.293 57.559 11.917

(1.061) (1.574) (0.881)

P = 0.000 P = 0.000 P = 0.000

Last driver −1.822 −6.759 1.715 −0.073 1.355

(0.915) (1.514) (0.852) (2.189) (0.860)

P = 0.047 P = 0.000 P = 0.045 P = 0.974 P = 0.116

Constant 18.653 21.352 27.406 60.504 57.354 36.102 61.032 65.923

(0.916) (1.370) (1.171) (1.531) (1.878) (1.252) (1.911) (0.811)

P = 0.000 P = 0.000 P = 0.000 P = 0.000 P = 0.000 P = 0.000 P = 0.000 P = 0.000

Participant random 
effects?

Yes Yes Yes Yes Yes Yes Yes Yes

Question random 
effects?

Yes Yes Yes Yes Yes Yes N/A N/A

n 786 382 389 786 382 389 375 2,000

Observations 3,144 1,528 3,112 3,144 1,528 3,112 750 4,000

Data from Studies 2 and 3 are limited to shared-control regimes in the table. ‘Human’ refers to the type of agent in question (that is, human as compared to the baseline, machine), ‘Mistake’ refers 
to whether the decision was a mistake (that is, the decision would have resulted in losing a life or losing more lives in Study 3) and ‘Last driver’ refers to the driver role (that is, the driver assumes the 
secondary role). All models include participant random effects and question (blame or causal responsibility) random effects, where applicable. Data were assumed to meet the requirements of the model. 
N/A, not applicable.
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error was a significant predictor of ratings (Table 1, bad interven-
tion, Study 2 and Fig. 2).

Missed interventions. We again replicated the main finding of 
Study 1. Driver type—whether the driver is a human or machine—
has a significant impact on ratings. Specifically, in shared-control 
scenarios (machine–human and human–machine), where both 
human and machine have made errors, the machine driver is con-
sistently blamed less than the human driver (Table 1, missed inter-
vention, Study 2 and Fig. 2).

As we noted in Study 1, the human–machine difference is driven 
by a reduction in the blame attributed to machines when there is 
a human in the loop. This is verified in Study 2 by comparison of  

blaming the machine in the shared control cases to blaming it in the 
fully automated car (driven by a sole machine driver). In each case, 
blaming the machine in the shared control case is significantly lower 
than blaming the machine in the fully automated car: fully automated 
(m1 = 75.6) versus machine–human (m2 = 59.5), t(754.63) = −7.4, 
P < 0.0001, m1 − m2 = 16.1, 95% CI for m1 − m2 = 11.8–20.3;  
versus human–machine (m3 = 48.5), t(745.06) = 11.7, P < 0.0001, m1 
− m3 = 27.1, 95% CI for m1 − m3 = 22.5–31.6.

Study 3. In Study 3, we used the same car regimes as in Study 2 but 
the cases were dilemma scenarios in which the drivers had to choose 
between crashing into a single pedestrian or crashing into five 
pedestrians. This study was conducted as a comparison to Studies 
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Fig. 2 | Blame ratings for user and industry in six car types. a,b, Bar plot (a) and dot plot (b). Data from Study 1 (S1: n = 786, observations = 3,144) and 
Study 2 (S2: n = 382, observations = 1,528). Ratings of blame and causal responsibility are aggregated (collectively referred to as blame, henceforth). 
Ratings of car and company are aggregated (collectively referred to as industry, henceforth). The y axis represents the six car types considered in S1 and 
S2. Two car types, HM (human–machine) and MH (machine–human), were considered in both studies. The y-axis labels include the study and the car 
type. For example, S1-HM represents the human–machine regime ratings collected in Study 1. In the six car types, the x-axis labelling of first driver refers 
to the main driver, while the last driver refers to the secondary driver in dual-driver cars and the sole driver in sole-driver cars. For bad intervention, only 
one agent has erred (the last driver). This agent (whether user or industry) is blamed more than the other agent (first driver, see Table 1). For missed 
intervention, in dual-driver cars (rows 2–7), both agents have erred. When human and machine are sharing control (within the dotted rectangle), blame 
ratings of Industry drop significantly regardless of the role of the machine (main or secondary). In Study 1, blame to Industry in S1-MH (m1 = 57.2) is 
significantly less than in S1-MM (m2 = 68), (t(760.6) = −5.05, P < 0.0001, m2 − m1 = 10.8, 95% confidence interval (CI) for m2 − m1 = 6.6–15).  
Blame to Industry in S1-HM (m1 = 53.4) is significantly less than in S1-MM (m2 = 68), (t(722.77) = −6.6042, P < 0.0001, m2 − m1 = 14.6, 95% CI for  
m2 − m1 = 10.2–19). In Study 2, blame to Industry in S2-M (m1 = 75.6) is significantly more than in S2-MH (m2 = 59.5), (t(754.63) = −7.3885,  
P < 0.0001, m1 − m2 = 16.1, 95% CI for m1 − m2 = 11.8–20.3) and is significantly more than in S2-HM (m3 = 48.51), (t(745.06) = 11.676, P < 0.0001,  
m1 − m3 = 27.1, 95% CI for m1 − m3 = 22.5–31.6).
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1 and 2, which involve clear errors, and the studies conducted in 
previous research on self-driving cars (such as in refs. 11,16–18), which 
involve the difficult choice of deciding which of two groups of peo-
ple to hit. All the main effects in Study 2 were replicated in Study 3.

Bad interventions. Here, we replicated the main results of Studies 1 
and 2, in bad intervention cases for the shared-control cars, whether 
or not the driver made an error was a significant predictor of ratings 
(Table 1, bad intervention, Study 3).

Missed interventions. Replicating the main results of Studies 1 and 
2, driver type has a significant impact on ratings. Specifically, in 
shared-control scenarios where both human and machine have 
made errors, the machine driver is consistently blamed less than the 
human driver (Table 1, missed interventions, Study 3).

Study 4. In Study 4 we replicated the central findings but using 
more ecologically valid stimuli. We used only the human–machine 
and machine–human shared control cars in the missed interven-
tions scenario; these are the cases where we observed systematic 
decrease in blaming the machine in Studies 1–3. For this study, we  
continued to use hypothetical scenarios but the stimuli shown  

to participants looked like realistic newspaper articles (see 
Supplementary methods 1, Studies 4–5).

The main finding of Studies 1–3 was replicated: the machine 
driver is consistently blamed less than the human driver in these 
shared-control scenarios where both human and machine have 
made errors (Table 1, missed interventions, Study 4).

Study 5. Study 5 was a replication of Study 4, run via YouGov with 
a nationally representative sample of the US population (see Fig. 3 
for details).

The main finding was again replicated: the machine driver is 
consistently blamed less than the human driver (Table 1, missed 
interventions, Study 5). This result (that is, human is blamed more 
than machine) holds directionally in 82% of demographic sub-
groups of participants (see Fig. 4).

Discussion
Our central finding is that in cases where a human and a machine 
share control of the car in hypothetical scenarios, less blame is 
attributed to the machine when both drivers make errors. The first 
deadly crashes of automated vehicles (mentioned above) were sim-
ilar in structure to our missed intervention cases. In those cases, 
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Fig. 3 | Representation of demographic attributes in Study 5. Study 5 was run via YouGov, a service that administers and runs surveys on nationally 
representative samples. The sample includes 2,000 participants with diverse demographic attributes. Participants who did not disclose their demographic 
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both the machine primary driver and human secondary driver 
should have taken action to avoid a collision, and neither driver 
did. Our results suggests that the public response that occurred to 

the crash—one that focused attention on the driver being exceed-
ingly negligent—is likely to generalize to other dual-error missed 
intervention-style cases, shifting blame away from the machine 
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Fig. 4 | Ratings of demographic subgroups in Study 5. Data collected in Study 5 from nationally representative sample (n = 2,000, observations = 4,000). 
Each row represents the mean of differential blame attributed to user (that is, human) versus industry (that is, car or company). Positive values (blue) 
indicate more blame attributed to user while negative values (red) represent more blame attributed to industry. Error bars are 95% CI. Only subgroups 
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typically have smaller samples.
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and towards the human. Moreover, the convergence of our results 
with this real-world public reaction seems to suggest that while 
we employed stylized, simplified vignettes in our research, our 
findings show external validity. Moreover, this pattern of results 
was replicated in a nationally representative sample of the US  
population (and across different subgroups; see Fig. 4), which 
employed naturalistic presentation of scenarios (see Supplementary 
methods 1, Studies 4–5).

Our central finding (diminished blame apportioned to the 
machine in dual-error cases) leads us to believe that, while there 
may be many psychological barriers to self-driving car adoption19, 
public over-reaction to dual-error cases is not likely to be one of 
them. In fact, we should perhaps be concerned about public under-
reaction. Because the public are less likely to see the machine as 
being at fault in dual-error cases like the Tesla and Uber crashes, 
the sort of public pressure that drives regulation might be lack-
ing. For instance, if we were to allow the standards for automated 
vehicles to be set through jury-based court-room decisions, we 
expect that juries will be biased to absolve the car manufacturer 
of blame in dual-error cases, thereby failing to put sufficient pres-
sure on manufacturers to improve car designs. Despite the fact that 
there are some avenues available to courts to mitigate psychological 
biases that may arise among juries (such as carefully worded jury 
instructions or expert witnesses), psychological biases continue to 
play an important role in court-based decisions20. In fact, we have 
been in a similar situation before. Before the 1960s, car manufac-
turers enjoyed a large amount of liberty from liability when a car’s 
occupant was harmed in a crash (because blame in car crashes was 
attributed to the driver’s error or negligence). Top-down regulation 
was necessary to introduce the concept of ‘crash worthiness’ into 
the legal system—that is, that cars should be designed in such a way 
as to minimize injury to occupants when a crash occurs. Only fol-
lowing these laws were car manufacturers forced to improve their 
designs21. Here, too, top-down regulation of automated car safety 
might be needed to correct a public under-reaction to crashes in 
shared-control cases. What, exactly, the safety standard should be is 
still an open question, however.

If our data identify a source of possible public over-reaction, it 
is for cars with a human primary driver and a machine secondary 
driver in bad intervention-style cases. These are the only cases we 
identified where the car receives more blame than the human. It 
seems possible that these sorts of cars may generate widespread 
public concern once we see instances of bad intervention-style 
crashes in human–machine car regimes. This could potentially 
slow the transition to fully automated vehicles if this reaction is not 
anticipated and managed appropriately in public discourse and legal 
regulation. Moreover, manufacturers that are working to release 
cars with a machine secondary driver should plan appropriately for 
the probable legal fall-out for these unique cases where that driver 
receives more blame than a human.

Our data portend the sort of reaction we can expect to auto-
mated car crashes at the societal level (for example, through public 
reaction and pressure to regulate). Once we begin to see societal-
level responses to automated cars, that reaction may shape incen-
tives for individual actors. For example, people may want to opt 
into systems that are designed such that, in the event of a crash, the 
majority public response will be to blame the machine. Worse yet, 
people may train themselves to drive in a way that, if they crash, the 
blame is likely to fall to the machine (for instance, by not attempting 
to correct a mistake that is made by a machine override). This sort 
of incentive shaping may already be happening in the legal domain. 
Judges who make decisions about whether to release a person from 
custody between arrest and trial frequently rely on actuarial risk 
assessment tables to help make their decision. Some suspect that 
judges may be overly reliant on these tables as a way of diminish-
ing their responsibility if a released person commits a crime. Recent 

attention generated in response to such a case focused on the role of 
the algorithm rather than the judge22, indicating that the possibility 
of incentive shaping in the legal domain is not so far-fetched.

Given these possible societal-level implications of our findings, 
it is important to acknowledge the potential limitations of interpret-
ing our data this broadly. First, the participants in all of our experi-
ments know that they are reading about hypothetical scenarios. It is 
possible that this reduces the psychological realism of the study23,24, 
causing participants’ responses to be characteristically different to 
what they would be after reading about an actual event. The litera-
ture provides a mixed view of how well responses to hypothetical 
scenarios map onto those made in real-life situations25–28. However, 
the research that does show considerable differences25,26 finds that 
these differences are mostly seen in the way participants them-
selves would act in moral situations and not necessarily about the 
moral judgments they render about third parties. In our paper, we 
study participants’ judgements (blame and causal responsibility) 
about third parties in hypothetical scenarios; these may align more 
directly with judgements of actual scenarios.

Second, although we may see a reasonably tight mapping 
between the opinions expressed in this study’s scenarios and those 
that would be expressed in real-life situations, it is important to note 
that, in the latter case, judgements will not be occurring in isolation. 
Instead, they will occur within a richer context than the carefully 
controlled scenarios used in our studies. People may hear reports 
of accidents with more emotion-arousing details, which are known 
to skew people’s judgements29,30. Moreover, the public’s reaction 
to hearing about semi-autonomous vehicle crashes will be shaped 
by many factors beyond their immediate psychological response 
(which is the object of our study), including opinion pieces they 
read, the views of community leaders and so on. These factors will 
collectively shape the public’s overall reaction to crashes.

Studies 1, 2, 4 and 5 looked at blame and causal responsibility 
attribution in cases where one or both drivers made errors. Study 3 
looked at dilemma scenarios where the drivers faced the choice of 
running over either one or five pedestrians. While there is, in some 
sense, an ‘optimal’ outcome in these cases (corresponding to sav-
ing more lives), it is not obvious that it would (for example) count 
as an error to refuse to swerve away from five pedestrians into a 
pedestrian that was previously unthreatened. In fact, the German 
Ethics Commission on Automated and Connected Driving report31 
indicates that programming cars to trade off lives in this way would 
be prohibited. The report states: “It is also prohibited to offset vic-
tims against one another. (…) Those parties involved in the gen-
eration of mobility risks must not sacrifice non-involved parties”. 
Even though participants in previous studies prefer to sacrifice one 
person who was previously not involved than five (for example,  
refs. 16,17), the German Ethics Commission’s decision underscores 
the fact that trading off lives in dilemma situations can be particu-
larly fraught. For this reason, and for continuity with previous work 
on the ethics of self-driving cars11,16,17 and in moral psychology more 
generally32,33, we chose to investigate dilemma situations. Our find-
ings about the effect of driver type in these cases underscore the fact 
that findings about how blame and responsibility are attributed after 
a crash may still hold in less-clear dilemma scenarios.

Some of our results fall in line with previous work on the psy-
chology of causal inference. In bad intervention cases, the primary 
driver (be it human or machine) makes a correct decision to keep 
the car on a course that will avoid a pedestrian. Following this, the 
secondary driver makes the decision to swerve the car into the 
pedestrian. Our data show that the secondary driver (the one that 
makes a mistake) is considered more causally responsible than the 
first. It is well established that judgements of causal responsibility 
are impacted by violations of statistical and moral norms34–37, and 
a mistake seems to count as such a violation. That is, if something 
unusual or counter-normative happens, that event is more likely to 
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be seen as a cause of some effect than another event that is typical 
or norm-conforming.

Moreover, the central finding that humans are blamed more than 
machines, even when both make errors, accords with research on 
the psychology of causal attribution. Findings in that field suggest 
that voluntary causes (causes created by agents) are better causal 
explanations than physical causes38. While it is clear that what a 
human does is fundamentally different to what a machine does in 
each of the scenarios, it remains an open question whether an arti-
ficial intelligence that is operating a car is perceived as a physical 
cause, an agent, something in between or something else entirely39,40. 
Future work should investigate the mental properties attributed to 
an artificial intelligence that controls a car both in conjunction with 
a human and alone. Understanding the sort of mind we perceive as 
dwelling inside an artificial intelligence may help us understand and 
predict how blame and causal responsibility will be attributed to it41.

Another open question concerns the implications of attribut-
ing blame to a machine at all. There are various ways that humans 
express moral condemnation. For example, we may call an action 
morally wrong, say that a moral agent has a bad character or judge 
that an agent is blameworthy. Judgements of blame typically track 
judgements of willingness to punish the perpetrator42,43. Are the 
participants in our study expressing that some punishment is due to 
the machine driver of the car, whatever that may mean? Alternately, 
is it possible that participants’ expressions of blame indicate that 
some entity is deserving of punishment that represents the machine 
(the company, or a human representative of the company, such as 
the chief executive officer). The similar blame judgements given to 
the car and the car’s representatives (company) perhaps support this 
possibility. Finally, it is possible that participants ascribe only non-
moral blame to the machine, in the sense of it being responsible but 
not in a moral sense. We may say that a forest fire is to blame for 
displacing residents from their homes, without implying that pun-
ishment is due to anyone at all.

Following these studies, the reason that participants blame 
machine drivers less than human drivers in missed intervention 
cases also remains an open question. The findings may be linked 
to the uncertainty with which we perceive the agential status of 
machines. Once machines are a more common element in our 
moral world and we interact with them as moral actors, will this 
effect change? Or will this finding be a lasting hallmark of the cogni-
tive psychology of human–machine interaction?

A final open question concerns whether the effects we report 
here will generalize to other cases of human–machine interaction. 
Already we see fruitful human–machine partnerships emerging 
with judges, doctors, military personnel, factory workers, artists 
and financial analysts, to name but a few. We conjecture that we may 
see the patterns we report here in domains other than automated 
vehicles, though each domain will have its own complications and 
quirks as machines begin to become more subtly integrated in our 
personal and professional lives.

Methods
This study was approved by the Institute Review Board at Massachusetts Institute 
of Technology. The authors complied with all relevant ethical considerations, 
including obtaining informed consent from all participants.

In all studies, participants were allocated uniformly randomly into conditions. 
Data collection and analysis were performed blind to the conditions of the 
experiments. The sample size was chosen in each study to ensure the inclusion at least 
100 participants for each condition. Numbers of participants were chosen in advance 
of running the study, and all data were collected before analysis. See details below.

In Studies 1–3 we excluded any participant who did not (1) complete all 
measures within the survey, (2) transcribe (near-perfectly) a 169-character 
paragraph from an image (used as an attention check) and (3) have a unique 
MTurk ID per study (all records with a recurring MTurk ID were excluded).

Case description. Summary descriptions of all car types and cases. For full 
vignettes, see Supplementary methods 1.

Sole-driver car. This car has only one driver that does all the driving. Two versions 
are used.

Human-only. This is a sole-driver car, in which a human is the driver. Also referred 
to as a regular car.

Machine-only. This is a sole-driver car, in which a machine is the driver. Also 
referred to as a fully automated car.

Dual-driver car. This car has a primary driver whose job it is to drive the car, and 
a secondary driver whose job it is to monitor the actions of the first driver and 
intervene when the first driver makes an error (also referred to as shared-control 
car). Four versions are used.

Human–machine. This is a dual-driver car in which a human is the primary driver 
and a machine is the secondary driver (also referred to as Guardian).

Machine–human. This is a dual-driver car in which a machine is the primary 
driver and a human is the secondary driver (also referred to as Autopilot).

Human–human. This is a dual-driver car in which a human is the primary driver 
and another human is the secondary driver.

Machine–machine. This is a dual-driver car in which a machine is the primary 
driver and another machine is the secondary driver.

Intervention types. We use two types of intervention: bad intervention and missed 
intervention. The description of each is dependent on whether the car is a sole- or 
a dual-driver car.

Bad intervention (dual-driver). The primary driver kept the car on its track. The 
secondary driver intervened and steered the car off its track (killing a pedestrian) 
rather than keeping the car on track and killing no one.

Missed intervention (dual-driver). The primary driver kept the car on its track. 
The secondary driver kept the car on its track (killing a pedestrian) rather than 
swerving into the adjacent lane and killing no one.

Bad intervention (sole-driver). The sole driver steered the car off its track (killing a 
pedestrian) rather than keeping the car on track and killing no one.

Missed intervention (sole-driver). The sole driver kept the car on its track (killing a 
pedestrian) rather than swerving into the adjacent lane and killing no one.

Dilemma versions (Study 3). The two outcomes of killing one pedestrian versus 
killing no one are replaced with the two outcomes of killing five pedestrians versus 
killing one pedestrian. For example, in missed intervention (dual-driver): (…) 
The secondary driver kept the car on its track (killing five pedestrians) rather than 
swerving into the adjacent lane and killing one pedestrian.

Study 1. Participants. The data were collected in September 2017 from 
809 participants (US residents) recruited from the Mechanical Turk platform (each 
was compensated US$0.5). Of those, 23 participants were excluded (as explained 
above) leaving us with 786 participants. Participants were aged 18–83 years 
(median, 33 years), 50% were females, 39% had an annual income of US$50,000 or 
more and 55% had a bachelor degree or higher.

Stimuli and procedures. Participants were uniformly randomly allocated to one of 
four conditions. Conditions varied the car type (human–human, human–machine, 
machine–human and machine–machine) in a four-level between-subjects design. In 
each condition, participants first read a description of the car and were then asked 
to attribute competence to each of the two drivers on a 100-point scale anchored 
at ‘not competent’ and ‘very competent’ (see Supplementary Fig. 1 for results on 
competence). Participants then read two scenarios (presented in a random order), 
one bad intervention case and one missed intervention case. After each scenario, 
participants were asked to indicate (on a 100-point scale) to what extent they thought 
each driver was blameworthy (from ‘not blameworthy’ to ‘very blameworthy’), and 
to what degree each of these two agents caused the death of the pedestrian (from 
‘very little’ to ‘very much’). Questions were presented in a randomized order. (See 
Supplementary methods 1, Study 1 for text of the vignettes and see Supplementary 
methods 2 for questions). At the end of the surveys, participants provided basic 
demographic information (for example, age, gender, income, education).

Study 2. Participants. The data were collected in May 2017 from 804 participants 
(US residents) recruited from the Mechanical Turk platform (each was 
compensated US$0.3). Of those, 25 participants were excluded (as explained 
above), leaving us with 779 participants. Participants were aged 18–77 years 
(median, 32 years), 48% were females, 39% had an annual income of US$50,000 or 
more and 54% had a bachelor degree or higher.
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Stimuli and procedures. Participants were uniformly randomly allocated to 
one of eight conditions. Conditions varied the car type (human-only, human–
machine, machine–human and machine only) and the industry representative 
(car and company), in a 4 × 2 between-subjects multifactorial design. In each 
condition, participants read two scenarios (presented in a random order), one 
bad intervention case and one missed intervention case. After each scenario, 
participants were asked to attribute causal responsibility, blameworthiness 
and competence (see Supplementary Fig. 1 for results on competence) to two 
agents: the human in the car and a representative of the car (the car itself or the 
manufacturing company of the car, depending on the condition). All other features 
of Study 2 were the same as those in Study 1.

Study 3. Participants. The data were collected in November 2016 from 
1,008 participants (US residents only) recruited from the Mechanical Turk 
platform (each was compensated US$0.6). Of those, 35 participants were excluded 
(as explained above), leaving us with 973 participants. Participants were aged 
18–84 years (median, 33 years), 51% were females, 37% had an annual income of 
US$50,000 or more and 53% had a bachelor degree or higher.

Stimuli and procedures. There were two groups of participants in Study 3: those 
who saw dual-driver cases and those who saw sole-driver. For those who saw 
dual-driver cases, participants were randomly assigned to one of six conditions 
in a 2 × 3 design, varying the car type (human–machine or machine–human) 
and the industry representative (car, company and programmer). Data for the 
programmer were later dropped from the analysis. For those who saw sole-driver 
cases, participants were randomly assigned to one of four conditions in a 2 × 2 
design, varying the car type (human-only or machine-only) and the industry 
representative (car or company). In each condition (for both dual- and single-car 
groups), participants read two scenarios (presented in a random order), one bad 
intervention case and one missed intervention case. These scenarios were the 
dilemma versions of those presented in Studies 1 and 2 (see description above). 
After each scenario, participants were asked to attribute causal responsibility and 
blameworthiness to two agents: the human in the car and a representative of the 
car (the car itself, the company or the programmer, depending on the condition). 
All other features of Study 3 were identical to those of Study 2.

Study 4. Participants. The data were collected in January 2019 from 
375 participants (US residents only) recruited from the Mechanical Turk platform 
(each was compensated US$0.3). No demographic data were collected for 
this study. Given that it was done on the same platform as Studies 1–3 (that is, 
Mechanical Turk), its demographic proportions are expected to be similar.

Stimuli and procedures. The key elements of this study and Study 5 are (1) the 
restriction to missed intervention cases and (2) the visual and textual content of 
the vignettes have the look and feel of a news piece (see Supplementary methods 1, 
Studies 4–5).

Participants were uniformly randomly allocated to one of four conditions. 
Conditions varied the car type (human–machine and machine–human) and 
the industry representative (car and company), in a 2 × 2 between-subjects 
multifactorial design. In each condition, participants read one scenario—one 
missed intervention case. The textual content of these scenarios was close to that 
presented in Studies 1–3, with slight changes to make it read like a news piece. 
After each scenario, participants were asked to attribute blameworthiness to two 
agents: the human in the car and a representative of the car (the car itself or the 
company, depending on the condition).

Study 5. Participants. The data were collected in March 2019 from 
2,189 participants (US residents) recruited via YouGov, a service that administered 
the study and collected the data from a representative sample of participants. The 
participants were then matched down to a sample of 2,000 participants based on 
demographics. See Fig. 3 for details on demographic proportions of participants in 
this study.

Stimuli and procedures. This study is identical in set-up in Study 4.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Raw data and source data for Figs. 2–4, Table 1 and Supplementary Fig. 1 are 
available at https://bit.ly/2kzLymH.

Code availability
Code used to produce figures and tables in this article is available at https://bit.
ly/2kzLymH.
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